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Abstract

Chromosome segregation during the cell cycle is an evolutionarily con-
served, fundamental biological process. Dynamic interaction between spin-
dlemicrotubules and the kinetochore complex that assembles on centromere
DNA is required for faithful chromosome segregation. The first artificial
minichromosome was constructed by cloning the centromere DNA of the
budding yeast Saccharomyces cerevisiae. Since then, centromeres have been
identified in >60 fungal species. The DNA sequence and organization of
the sequence elements are highly diverse across these fungal centromeres. In
this article, we provide a comprehensive view of the evolution of fungal cen-
tromeres. Studies of this process facilitated the identification of factors in-
fluencing centromere specification, maintenance, and propagation through
many generations. Additionally, we discuss the unique features and plasticity
of centromeric chromatin and the involvement of centromeres in karyotype
evolution. Finally, we discuss the implications of recurrent loss of RNA in-
terference (RNAi) and/or heterochromatin components on the trajectory
of the evolution of fungal centromeres and propose the centromere struc-
ture of the last common ancestor of three major fungal phyla—Ascomycota,
Basidiomycota, and Mucoromycota.
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INTRODUCTION

The fungal kingdom constitutes approximately 2.2 to 3.8 million species (40) ranging from free-
livingmicrobes to deadly pathogens that thrive in diverse host and environmental niches including
soil, water, plants, and animals. The development of genetic tools along with the ease of laboratory
culturing and faster growth rate facilitated the use of fungi to study evolutionarily conserved bio-
logical processes. One such well-explored process is chromosome segregation, mediated by cen-
tromere DNA and the associated kinetochore protein complex. The primary constrictions, first
described byWalther Flemming (28) and later identified as centromeres, serve as the chromosomal
binding sites for spindlemicrotubules. Inmost organisms, centromeres are localized chromosomal
domains, present only once on every chromosome.The centromere-kinetochore complex ensures
timely and accurate attachment of the spindle microtubules to facilitate the faithful segregation
of sister chromatids.

Fast and efficient short- and long-read sequencing techniques and analytic tools enabled
complete genome assembly of a large number of organisms and the study of the evolution of
key molecular components involved in the maintenance of genome stability. The budding yeast
Saccharomyces cerevisiae was the first eukaryote to have its entire genome sequenced (32). A recent
boom in DNA sequencing efforts has resulted in the availability of over 2,000 representative
fungal genomes, providing us with the broadest spectrum of assembled genomes among various
eukaryotic kingdoms (https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/fungi).

To date, the identity of centromeres from over 60 fungal species has been predicted by DNA
sequence analyses; a majority of them have been validated by genetic and/or biochemical exper-
iments (Figure 1). The critical analyses of the structural and functional properties of the fungal
centromeres have extended our understanding of the evolutionary forces acting on these chro-
mosomal elements. What has evoked interest is the nonuniversality of the factors that define and
regulate centromere structure and function. In this review, we provide a comprehensive picture of
the diverse classes of fungal centromeres to project a holistic view of their evolutionary trajectories.
We summarize the factors influencing centromere establishment and maintenance. The influence
of DNA sequence, DNA replication timing, and spatial positioning of centromeres that facili-
tates cross talk between chromosome segregation machinery and components of other molecular
machinery within the nucleus is also explored. We discuss emerging evidence that suggests cen-
tromeres are mediators of chromosome rearrangements, a paradoxical contribution that imparts
karyotypic diversity in fungi. Based on the structural conservation of centromeres identified from
three major fungal phyla (Ascomycota, Basidiomycota, and Mucoromycota) (Figure 1a), features
of an ancestral centromere are proposed.
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Figure 1

Phylogenetic distribution of fungal species with known centromeres. (a) Phylogenetic tree showing the divergence of various fungal
phyla from the last eukaryotic common ancestor (LECA, purple circle). The fungal phyla Ascomycota (A), Basidiomycota (B), and
Mucoromycota (M), which originated from a hypothetical last common ancestor (LCA, green circle), are placed within the black dashed
box. Phylogenetic tree adapted from Reference 75. (b) A maximum-likelihood-based tree of 55 fungal species with known centromeres
was generated from the conserved orthologs identified in these species using OrthoFinder (23), MAFFT (50), and FastTree (71).
Blastobotrys adeninivorans, Epichloë festucae, and some species belonging to the genera Lachancea andMalassezia with known centromere
loci are not included in this phylogenetic tree, as the complete annotation of open reading frames is not available. The branches and the
groups of species are color-coded based on the centromere type: orange and red, unconventional and conventional point centromeres,
respectively; green, short regional; blue, long regional; and purple, mosaic-type centromeres. Nine nodes, marked with black circles
numbered from one to nine, containing species with similar centromere type, are collapsed and represented as triangles. (c) The internal
species-level tree topology of the collapsed nodes is expanded, and branches are color-coded as in panel b.
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A POINT THAT IS OFTEN STRETCHED: DIVERSITY
IN CENTROMERE STRUCTURE

Molecular understanding of centromere DNA was initiated by cloning of centromeres in S. cere-
visiae, which led to the construction of the first artificial minichromosome (18). The 125-bp point
centromere of S. cerevisiae, roughly the same length as that of DNA wrapped around a single nu-
cleosome, consists of conserved DNA elements (CDEs): CDEI, CDEII, and CDEIII (44). CDEI
and CDEIII share conserved but degenerate motifs of 8 and 26 nucleotides, respectively (27).
Although the highly AT-rich CDEII (78–86 bp) (31) is not conserved, its length is important for
centromere function (24). A single–base pair mutation in the CCGmotif in CDEIII is sufficient to
abolish the centromere function. Centromeric nucleosomes contain centromere-specific histone
H3 variant CENP-ACse4 (97). Binding of kinetochore proteins facilitates bending of the DNA
flanking CDEII, which has an intrinsic ability to form curves (8, 69). These physical properties
andDNA sequence recognition by the point centromere–specific protein complexes contribute to
the genetic identity of centromere DNA, enabling these sequences to mediate de novo assembly
of kinetochore components.

Approximately 25 closely related Saccharomycetes species in the fungal phylum of Ascomy-
cota have been found to contain conventional CDE-like elements at their centromeres (33)
(Figure 1b). In these organisms, the length of CDEII varies from 93 bp in Lachancea waltii to
161 bp in Kluyveromyces lactis (33, 42, 61). These conserved structural features of centromere DNA
shared by organisms in the subphylum Saccharomycotina indicate a single origin of the point
centromere (Figure 1b). More recently, unconventional point centromeres that harbor CDEs
different from those of S. cerevisiae have been reported inNaumovozyma castellii andNaumovozyma
dairenensis (53). In contrast to the case of other species with point centromeres, gene synteny anal-
ysis suggests a unique and separate origin of point centromeres in N. castellii and N. dairenensis.
The genetic identity of these unconventional point centromeres also revealed a rapid coevolution
of the CBF3-complex components Ndc10 and Cep3, which recognize diverged point centromere
DNA sequences (53).

Most other fungal species have regional centromeres spanning beyond a single nucleosome
and are not strictly defined by the underlying DNA sequence (Figures 1b,c and 2). The short
regional centromere (<20 kb) was first identified in a CUG-Ser1 clade species, Candida albicans,
and these centromeres feature central CENP-ACse4-bound centromeric chromatin spanning 3 to
5 kb embedded within unique sequences (77, 78). Lack of sequence conservation and the inabil-
ity of centromere DNA to stabilize a centromeric plasmid carrying an autonomously replicating
sequence (ARS) suggested DNA sequence–independent inheritance of centromere function (7).
Centromeres of Candida dubliniensis also share similar features, containing unique DNA sequences
that are remarkably diverged from their C. albicans counterparts (68). AT-rich short regional cen-
tromeres with unique DNA sequences were identified in another CUG-Ser1 clade species, Can-
dida lusitaniae (49) (Figure 1b).Using various genetic, genomic, and biochemical approaches, short
regional centromeres were identified in other species including Kuraishia capsulata (59), Ogataea
polymorpha (72), Blastobotrys adeninivorans (57), and Yarrowia lipolytica (30). Unusual short regional
centromeres of Y. lipolytica carry conserved blocks of 9–14-bp regions with dyad symmetry (96).

Inverted repeat (IR)-associated short regional centromeres were identified in the CUG-Ser1
clade species Candida tropicalis (15), which diverged ∼39 million years ago from C. albicans. Unlike
the unique centromeres inC. albicans, all seven centromeres ofC. tropicalis are highly homogeneous
(56) (Figures 1b and 2), containing a 2–3-kb-long CENP-ACse4-bound mid core flanked by 3–5-
kb-long IRs. Intriguingly, the entiremid core flanked by IRs present on a plasmid can facilitate the
de novo recruitment of CENP-ACse4 and improve its mitotic stability, albeit at a lower frequency
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than that of S. cerevisiae (15). Similar IR-associated centromeres were identified in Komagataella
phaffii that consist of∼2-kb IRs flanking∼1-kb central core (mid ) regions (20).Zymoseptoria tritici,
a filamentous ascomycete, contains 5.5–13.5-kb CENP-ACenH3-enriched centromeric chromatin
(80). Apart from the ascomycetes described above, organisms of the Malassezia species complex
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Figure 2 (Figure appears on preceding page)

DNA sequence and structural and chromatin properties of seven major fungal centromere types. (Left)
Schematic of the centromere organization highlighting the centromeric chromatin domain (purple) and
flanking pericentric region (pink) in each representative type of fungal centromere. Line diagrams are not
drawn to scale. A representative nucleosomal arrangement of each type of centromere is shown in a dashed
box. (Right) The presence or absence of various determinants of centromere structure and function is shown.
Transposon refers to the presence of either a full-length transposon or a truncated version of it in at least
one centromere of a given species. Centromere-specific DNA sequence elements include conserved DNA
sequences present exclusively at the centromeres, but not necessarily common to all centromeres.
Centromere-specific elements include conserved DNA elements (Saccharomyces cerevisiae), an AT-rich motif
(Mucor circinelloides), pericentric repeats (Candida tropicalis and Schizosaccharomyces pombe), and full-length Tcn
retrotransposons (Cryptococcus neoformans) (14). Abbreviations: CEN, centromere; RNAi, RNA interference.

of the fungal phylum Basidiomycota (Figure 1) also possess short regional centromeres that are
highly AT-rich, with 2–5-kb-long centromeric chromatin (76) (Figure 2).

A class of DNA sequence–dependent long regional centromeres (>20 kb) was identified in the
fission yeast Schizosaccharomyces pombe (16, 26, 64). The length of fission yeast centromeres ranges
from 40 to 110 kb, encompassing the kinetochore-bound central core (CC) region flanked by
various types of repeats (17) (Figure 2). The central regions of CEN1 and CEN3 of S. pombe share
homology, whereas the central region of CEN2 is unique (17). The pericentric region consists
of dg and dh classes of repeats (16). However, a part of CC and one arm of pericentric chromatin
proved to be sufficient for the establishment of centromere identity and proper segregation
of minichromosomes (6). Similar repeat-associated long regional centromeres were identified
in closely related Schizosaccharomyces species: Schizosaccharomyces cryophilus, Schizosaccharomyces
octosporus, and Schizosaccharomyces japonicus (74, 93).

Long regional centromeres, which are rich in transposons, have been reported in both the
Ascomycota and Basidiomycota (Figure 2). Centromeres ofNeurospora crassa,Magnaporthe oryzae,
and Cryptococcus neoformans are highly repetitive and harbor active and/or truncated transposable
elements (13, 100, 101). The length of centromeres ranges from 150 to 300 kb of heterochro-
matic DNA in N. crassa (13). The repeats at the centromeres of N. crassa contain numerous C:T
andG:A transitions introduced by recurring cycles of repeat-induced point mutations (RIPs) lead-
ing to centromere DNA sequence divergence (12, 82). AT-rich centromeres ofM. oryzae contain
57–109-kb centromeric chromatin (101). Chromosome conformation capture (3C) analysis re-
vealed putative centromeric regions containing clusters of retrotransposon element Tdh5 span-
ning 18–27-kb regions on every chromosome in the ascomycete Debaryomyces hansenii (59). The
RNA interference (RNAi)-proficient species of the Cryptococcus species complex harbor 20–110-
kb-long centromeric chromatin. RNAi seems to help maintain full-length retrotransposons at
centromeres by suppressing their expression in these organisms (100). It has been proposed that
in the absence of RNAi, increased transposition and recombination between retrotransposable
elements led to reduction in centromere length. A correlation between accumulation or loss of
retrotransposons with alteration in centromere length has been reported in the Cryptococcus as
well as the Ustilago species complexes (100).

Most fungal centromeres studied to date are enriched with CENP-A (99). The loss of CENP-
A has been described in kinetoplastid kinetochores present in trypanosomes (1). In addition,
certain insect lineages that lack CENP-A (21) harbor holocentric chromosomes, implying
an independent transition to holocentricity (diffuse centromeres along the entire length of a
chromosome) upon CENP-A loss in these lineages (1, 21). Among fungi, CENP-A loss has
been recently reported in an early diverging subphylum, Mucoromycotina (66, 94). Strikingly,
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Mucor circinelloides has monocentric chromosomes despite lacking CENP-A. The average ki-
netochore binding length is 941 bp, with a conserved AT-rich motif, in this organism. These
centromeres are of a mosaic type given their point centromere–like kinetochore binding domain
and unusually long pericentric regions. These pericentric regions range between 15 and 75 kb
and are interspersed with Grem-LINE1 elements, which are repeats of LINE1-like non-LTR
retrotransposable elements (Figure 2). The diversity in both the length and the structure of
fungal centromeres hints at the presence of additional factors beyond centromeric DNA for the
establishment and propagation of centromeric chromatin.

CENTROMERE ESTABLISHMENT VERSUS PROPAGATION

Establishment of centromeric chromatin involves interactions between kinetochore proteins and
centromere DNA that can be at the level of primary DNA sequence, chromatin architecture,
and/or three-dimensional conformation of the genome (Figures 2 and 3). Factors required for
maintenance of centromeric chromatin include heterochromatin components, transcriptional sta-
tus, replication timing, and spatial chromosomal interactions (Figure 3).

Establishment of centromeric chromatin on naked DNA sequences was first demonstrated by
high mitotic stability of minichromosomes in S. cerevisiae (18). However, in many fungal species,
the mode of centromere establishment is independent of the underlying DNA sequence. In
S. pombe, a heterochromatic environment facilitated by the HP1 homolog Swi6 and RNAi-
mediated machinery helps in the efficient recruitment of CENP-ACnp1 to the central regions
(29, 37) (Figure 3a). On the other hand, the epigenetic nature of centromeres in C. albicans
that lacks RNAi and conventional heterochromatin does not permit the stabilization of a kineto-
chore on an externally introduced centromeric plasmid (7). This raises the possibility that species-
specific factors are involved in centromere establishment.This plasticity of centromeric chromatin
has been exemplified in experiments carried out in fungal species studying neocentromere for-
mation, transgene silencing at the centromere, artificial centromere construction, and dicentric
inactivation.

Neocentromeres, which are sites acquiring centromeric properties in the event of native
centromere inactivation, act as an excellent tool to study factors contributing to centromere
establishment. Systematic deletion of CENP-ACse4-binding and -flanking DNA sequences in
C. albicans resulted in the formation of neocentromeres in close proximity to the deleted region
(92) (Figure 3c). An independent study reported the activation of both proximal and distal
neocentromeres in C. albicans (51). Strikingly, Hi-C studies indicated that even the distal neo-
centromere clusters with other native centromeres of various chromosomes. This indicates
that proximity to the CENP-A–rich zone or CENP-A cloud where endogenous centromeres
cluster together at the nuclear periphery is a stronger determinant than the DNA sequence
itself for neocentromere establishment in this organism (92). This was seen to be consistent
in C. dubliniensis as well (92). On the other hand, the conditional deletion of a centromere in
S. pombe produced survivors in which chromosomes were largely rescued by telomeric fusions
with another chromosome or in rare cases activated a neocentromere at a subtelomeric region
(46) (Figure 3c). The similarities in the heterochromatin environment at both of these loci and
the presence of sequences homologous to the dg and dh elements identified in the subtelomeric
regions explain the preferential activation of neocentromeres at these loci (38).

Reversible transgene silencing is a unique feature of centromeric chromatin. When trans-
gene URA4 or ADE2 is integrated at the central region of centromeres in S. pombe, the trans-
gene undergoes reversible transcriptional silencing, rendering variable expression patterns (2, 35,
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102). However, the expression of the same transgene integrated at the outer repeats was effi-
ciently turned off due to the highly heterochromatic nature of these repeats (3). The boundary of
centromeric heterochromatin that retains the property of reversible silencing was determined
in C. albicans by integrating URA3 as a transgene at the core and centromere-flanking regions.
This study suggested flexible positioning of CENP-ACse4 within a domain that permits neocen-
tromere activation when the native centromeric DNA sequence is deleted (85). In S. pombe, how-
ever, the tRNA genes were identified as the boundary elements between CENP-ACnp1 chromatin
and flanking heterochromatin regions (81). These studies indicate that low levels of CENP-ACse4

can be present beyond the 3–5-kb region of centromeric chromatin in the absence of any boundary
elements in C. albicans, while CENP-ACnp1 is restricted by defined boundary elements in S. pombe.
Structural boundary elements are not identified in other classes of regional centromeres, and thus
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Figure 3 (Figure appears on preceding page)

Molecular determinants of centromere formation in fungi. (a) Maintenance of centromeric heterochromatin at the outer repeats in
Schizosaccharomyces pombe is mediated by RNA interference–dependent machinery (60) where both strands of the outer repeats are
transcribed by RNA polymerase II. Double-stranded RNA (dsRNA) molecules are generated with the help of RNA-dependent RNA
polymerase I (Rdp1) and processed by Dicer (Dcr1) to yield small interfering RNAs (siRNAs). The resulting duplex siRNAs are loaded
onto the Argonaute (Ago1) complex and converted into single-stranded siRNAs after cleavage and released as the passenger strand in
the RNA-induced transcriptional silencing (RITS) complex. The RITS complex also recruits the H3K9 methyltransferase Clr4. H3K9
methylation stabilizes the association of RITS with centromeric chromatin and also provides binding sites for Swi6. (b) Fungal
centromeres replicate early in S phase. The time of incorporation of new CENP-A molecules on the replicated centromere DNA
strands differs between point and regional centromeres. While a replication-coupled loading of CENP-A occurs in point centromeres
of Saccharomyces cerevisiae, CENP-A loads at G2 phase in a replication-independent manner in regional centromeres of S. pombe. (c) The
location of the centromere (14) cluster at the nuclear periphery is evolutionarily conserved across fungal species. A drawing
representing the Rabl-like organization of chromosomes is shown. Centromeres are clustered close to the spindle pole bodies (SPBs).
The centromere cluster is enriched with CENP-A molecules that form a CENP-A-rich zone or CENP-A cloud. The concentration of
CENP-A is gradually reduced from the core centromere to the peripheral regions. The size of the gray area around the blue circles is
proportionate to the frequency of neocentromere activation. Upon deletion of a native centromere, the frequency of neocentromere
activation is higher at a centromere-proximal location than at the centromere-distal sites in Candida albicans. In S. pombe, a
heterochromatin-mediated mechanism guides the activation of neocentromeres at subtelomeric regions. (d ) The spatial clustering of
centromeres, either constitutive or cell cycle stage–specific, is a unique feature across fungal species. (Left and middle) Clustering
patterns for representative fungal species have been depicted by kinetochores (green) arranged at the periphery of the nuclear mass (dark
gray). (Right) The microscopic observations of spatial clustering have been supported by 3C-seq and derived techniques. A drawing of a
genomic contact probability matrix representing enhanced intercentromeric interactions, as reported in several fungal species, is shown.
Other abbreviation: CEN, centromere.

it is not well understood what restricts the length of the functional centromeric chromatin that
seeds kinetochore assembly.

New insights into factors required for centromere function could be gained by studying the
fate of dicentric chromosomes. In S. cerevisiae, dicentric chromosomes are unstable but are stabi-
lized exclusively by DNA rearrangements when one of the two centromeres becomes inactivated
(47). The artificial dicentric chromosome generated in S. pombe using site-directed recombina-
tion led to cell cycle arrest at interphase. Less than 1% of the survivors were shown to inactivate
one of the centromeres either by DNA sequence rearrangement or by heterochromatinization of
the centromere DNA sequence leading to epigenetic inactivation (79). The fact that the native
centromere always serves as the sole functional centromere despite the presence of several po-
tential neocentromere sites indicates the existence of an active suppression mechanism to keep
neocentromeres dormant.

Maintenance of centromeric chromatin involves efficient propagation of already established
centromeric chromatin marks. Even the genetically determined point centromere in S. cerevisiae
displays an epigenetic mode of maintenance. Chl4 is a nonessential kinetochore protein in
S. cerevisiae. A centromeric plasmid introduced into chl4 mutants displays reduced mitotic sta-
bility. Whereas if the same mutation is introduced after the centromere is allowed to establish
on the plasmid centromere, 50% of the cells show high mitotic stability, indicative of the semi-
essential role of Chl4 in centromere maintenance (63). In S. pombe, when various centromeric
plasmids with incomplete centromere DNA sequences were transformed, the mitotically unstable
plasmid switched to a stable state by epigenetic means. Strikingly, this stable state was efficiently
propagated in subsequent cell divisions (87).

THE ENIGMATIC CHROMOSOMAL HUB: CENTROMERE
SPECIFICATION IN TIME AND SPACE

Centromeres are spatially and temporally distinguishable from the rest of the genome owing to
their distinct clustering patterns and replication timing, respectively. Centromeres are replicated
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in the earliest part of S phase in certain Saccharomyces species (70),C. albicans (54), and S. pombe (73)
(Figure 3b). What is the significance of fungal centromeres being early replicating? Early repli-
cation timing ensures proper kinetochore assembly at the centromeres (52) and helps to maintain
the viability of cells in the face of any replication stress in S. cerevisiae (25). Early replication of
centromeres due to the early firing of the centromere-proximal origins can be attributed to their
characteristic clustering and nuclear subpositioning (4). The relocation of a centromere to a late
firing region enhances the replication timing of the latter, emphasizing that the mere presence of a
centromeric sequence can modulate replication timing (70). Pausing of the DNA replication fork
at centromeres helps in maintaining centromere DNA loop formation, which is essential for sister
centromere separation and kinetochore assembly in S. cerevisiae (19, 34). In S. pombe, centromeres
and the subtelomeric regions have a similar heterochromatin environment but differ in their repli-
cation timing.The heterochromatin protein Swi6 helps in early replication of centromeres (5, 39),
exhibiting the prominent role played by heterochromatin in influencing replication timing and the
consequent effect on centromere function.

The temporal effect on DNA replication origin firing has also been studied in C. albicans, in
which deletion of a native centromere gives rise to a neocentromere with the activation of an
early firing neo-origin (54). This clearly shows that centromeric location positively influences
replication timing of the adjacent regions. In Y. lipolytica, a centromere-linked replication origin
helps to maintain plasmid stability (30). Hence, the role of centromere-proximal origins seems to
be more than just acting as initiation sites for DNA replication.

Apart from the temporal regulation of centromere replication, the positioning of centromeres
at the nuclear periphery near spindle pole bodies (SPBs) in a transcription-poor zone facilitates
spindle attachment and shields the centromere from pervasive transcription (62). Centromeres
are clustered throughout the cell cycle in S. cerevisiae (48) and C. albicans (78) (Figure 3c), and the
existence of a CENP-A-rich zone or CENP-A cloud at centromere-proximal regions has been
proposed (92). In S. cerevisiae, a locally enriched population of CENP-ACse4 molecules at peri-
centromeres helps in the rapid incorporation of CENP-ACse4 in the event of untimely eviction
of CENP-ACse4 from the centromeres (36). Localization of CENP-ACse4 molecules as a single
punctum per nucleus suggests that a CENP-A-rich zone exists. The CENP-A cloud hypothe-
sis explains the activation of native centromere-proximal neocentromeres in C. albicans (11, 92).
Unlike the case of budding yeast, centromeres in fission yeast cluster during interphase and un-
cluster for a brief period during mitosis (90). These clustered centromeres are attached to the
nuclear envelope near the site of SPBs during interphase (45). In C. neoformans, unclustered cen-
tromeres in interphase eventually cluster at the mitotic onset in a microtubule-dependent manner
(55).

Apart from unicellular yeasts, centromere clustering has also been observed in filamentous
fungi like Fusarium graminearum, N. crassa, and M. oryzae, wherein with the exception of M.
oryzae, all centromeres were found to constitutively cluster by fluorescence microscopic analyses
(84, 101) (Figure 3d ). Despite the differences in the centromere clustering patterns across fungal
species examined to date, it has been consistently shown that centromere clustering is important
for proper kinetochore-microtubule attachment during mitosis (45, 91, 98).

Recent progress in microscopic imaging and sequencing techniques has enabled the successful
mapping of distinct compartments within the nucleus to address fundamental questions regarding
the structure and functional states of chromosomes. 3C-sequencing in S. cerevisiae revealed that
the clustered centromeres are present in close spatial proximity, leading to physical interactions
between different chromosomes (22) (Figure 3d ). In S. pombe, where heterochromatin is a major
determinant of centromere organization, centromere-proximal regions interact with each other at
higher contact frequency, as revealed by Hi-C analysis. A similar correlation supported by Hi-C
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analysis in N. crassa revealed predominant interactions across constitutively heterochromatic
regions enriched with H3K9me3 and HP1. Due to the conserved clustering features of fungal
centromeres, Hi-C and related techniques have been used to accurately predict centromere loci
in fungal genomes (95).

What determines the clustering of centromeres in the absence of heterochromatic marks
and well-defined DNA sequences remains an enigma. Clustering of C. albicans centromeres,
which are devoid of conventional heterochromatin, indicates additional factors are involved that
facilitate this process (85). As discussed previously, centromere clustering favors the site of cen-
tromere formation in subsequent cell cycles, possibly by CENP-A nucleation. Surprisingly, even
in the CENP-A-deficient speciesM. circinelloides, centromeres are constitutively clustered in both
the spore and the germination tube (66) (Figure 3d ).

THE ACHILLES’ HEEL: GENOME REARRANGEMENTS
INVOLVING CENTROMERES

The mechanisms contributing to the rapid evolution of centromere DNA, especially in asexual
fungi, remain unclear. Genome synteny analyses in C. albicans and C. tropicalis helped identify
genomic rearrangements near centromeres suggesting intercentromeric translocations in the
last common ancestor (15, 35a). One can hypothesize that centromere-type transition between
C. tropicalis andC. albicanswas initiated due to such translocation events.A similar intercentromeric
translocation has been observed in the common ancestor of S. cryophilus and S. octosporus (93).Cen-
tromeres are also involved in karyotypic evolution of fungal species. One such example is found in
Eremothecium gossypii, where a break at the centromere followed by fusion of the broken arms with
two other chromosomes in the ancestor led to chromosome number reduction (33). Centromere
breaks resulting in chromosome number reduction have been reported recently in theMalassezia
species complex (76) (Figure 4).

Chromosomal rearrangements may lead to reproductive isolation and speciation (10). How-
ever, the altered karyotype may also confer fitness advantages for it to be selected over the

Ancestor

Descendant
Altered karyotype

Fusion of chromosome arms

Break at AT-rich centromere

Loss of centromere

Figure 4

Centromere-mediated karyotype evolution in fungal species. A possible consequence of chromosome
breakage at an AT-rich centromere. The resulting acentric fragments can be stabilized by fusion with other
chromosomes, eventually leading to an altered karyotype as observed in the species complexes belonging to
Ascomycota and Basidiomycota. Each of the three colors (blue, light blue, and orange) indicates a distinct
chromosome.
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ancestral karyotype. Because it is difficult to predict the factors driving speciation, the fitness
advantages conferred by species-specific rearrangements are not well understood.One of the ways
to achieve karyotypic alteration is through centromere-mediated chromosomal rearrangements.
An example of such a translocation includes the bipolar-to-tetrapolar mating-type transition in
the Cryptococcus species complex, which involves a pericentric inversion, thereby rewiring the
regulation of the mating-type locus (89). Another instance where karyotype alteration provides
a specific fitness advantage involves the generation of an isochromosome of chromosome 5L in
C. albicans that confers fluconazole resistance (83). Thus, centromere DNA, one of the guardians
of genome stability, may contribute to chromosomal rearrangements and possibly speciation.

SUMMARY AND FUTURE DIRECTIONS

In this review we highlight the diversity of fungal centromeres and the conserved factors for cen-
tromere structure and function (Figure 5). Over the last few decades, the number and types of
centromeres identified within the fungal kingdom hinted that centromere specification cannot be
explained by a unifying factor. The contribution of the centromere DNA sequence alone encod-
ing centromere identity holds true only for certain species. In fact, identification of centromeres
in closely related Saccharomyces, Schizosaccharomyces, and Candida species revealed that the cen-
tromeres are one of the fastest-evolving loci even in the absence of asymmetric meiosis (9, 68,
74). Therefore, a rapid coevolution of centromere DNA and the associated kinetochore proteins
seems to be the only plausible explanation for fungal centromeres, similar to what was originally
proposed in flies (41). It may be possible that the structural and sequence elements present in
the ancestral lineages established centromere identity but were not essential for its propagation
and were eventually lost in their successors (Figure 5). RIP is one such mechanism reported in
N. crassa to account for such rapid changes in centromere DNA sequences.The presence of similar
mechanisms can be probed in other fungal species.

Independent of centromere DNA sequences or the presence of RNAi and/or heterochro-
matin components, spatial positioning of the centromere cluster and a favorable chromatin en-
vironment contribute to kinetochore formation. This necessitates in-depth studies to understand
the centromere-kinetochore interactions in 3D across closely related species. Recent advances in
Hi-C analyses have significantly enriched our understanding of the interactions between cen-
tromeres and flanking regions in fungal species. Roles of replication-associated proteins in cen-
tromere maintenance have been studied in S. cerevisiae (65) and C. albicans (86). It is tempting to
speculate that despite their having different centromere types, a similar spatial memory guides cen-
tromere location and regulates its activity (7, 11). The CENP-A cloud hypothesis was proposed to
explain the importance of physical location that regulates neocentromere establishment (92). The
conserved Rabl conformation is also associated with a gradient of replication timing. The chro-
mosomes are arranged in a predetermined way where the clustered centromeres and the flanking
regions are early replicating and replication timing is increasingly delayed from centromeres to-
ward telomeres (58). The impact of spatial genome organization in fungi can be better understood
by studying physical processes like phase separation (88). Formation of heterochromatin domains
is mediated by phase separation, a phenomenon that gives rise to non-membrane-bound nuclear,
cytoplasmic, and extracellular components (88). It is plausible to imagine centromeric chromatin
as a phase-separate biomolecular condensate owing to its distinct chromatin properties, its sub-
nuclear positioning, and most importantly the presence of an ensemble of a hundred different
kinetochore proteins occupying its binding site.

The loss of functional RNAi machinery within the same species complex leads to shortening of
the centromere (100). RNAi has been suggested as a centromere length maintenance mechanism

846 Guin • Sreekumar • Sanyal

A
nn

u.
 R

ev
. M

ic
ro

bi
ol

. 2
02

0.
74

:8
35

-8
53

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
49

.2
07

.2
07

.2
09

 o
n 

07
/1

5/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Saccharomyces cerevisiae

Cryptococcus neoformans

Cryptococcus deuterogattii

Malassezia sympodialis

Mucor circinelloides

Candida albicans

Complete or partial
loss of RNAi

Loss of pericentric
heterochromatin

Shortening of
centromeric chromatin

Gain of specific
kinetochore proteins

10–15 kb

27–64 kb

8–21 kb

3–5 kb

3–5 kb

Ancestral state Evolved stateTrajectory of evolution

Schizosaccharomyces pombe

0.125 kb

0.7–1 kb

Ascomycota

Basidiomycota

Mucoromycota

Last eukaryotic common ancestor
Opisthokonta
LCA of all fungi
LCA of Ascomycota, Basidiomycota, and Mucoromycota

RNAi/heterochromatin deficient
RNAi/heterochromatin proficient
RNAi/heterochromatin incomplete

>0.5 kb 0.125 kb

RNAi-proficient species
with regional centromeres

RNAi-deficient species
with point centromeres

Conserved spatial clustering of centromeres
at the nuclear periphery near SPB

Histone methylation
Transposons
CENP-A nucleosome
Repetitive DNA element

Figure 5

Trajectory of centromere evolution in fungi. A possible trajectory of events leading to transition in centromere types in fungal species
during evolution. Presence of RNA interference (RNAi) and/or heterochromatin in species from each of the three major fungal phyla
represented above suggests that the ancestral species harbors transposon-rich regional centromeres with >700-bp-long kinetochore-
bound regions flanked by pericentric regions. Recurrent loss of RNAi and/or heterochromatin led to a reduction in centromere length
and emergence of point centromeres. The only feature that remains conserved in spite of the diversity in the centromere structure is
the spatial clustering of centromeres. This evolutionarily conserved nature of spatial clustering of centromeres near spindle pole bodies
(SPBs) away from the active transcription zone may play a significant role in centromere specification and its subsequent propagation.
Other abbreviation: LCA, last common ancestor.

for long transposon-rich centromeres. On the other hand, the absence of RNAi within the
Saccharomycotina is correlated with their short centromeres devoid of transposons. The loss of
HP1 and other components of heterochromatin in these budding yeast species (43) compromised
the possibility of an RNAi-induced heterochromatin pathway, which is a predominant mechanism
for heterochromatin formation in species like S. pombe (Figure 5).Further analysis of more fungal
species will reveal whether this dependency is universal. RNAi can be thought to be a defense
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mechanism that functions in fungi to combat mycoviruses (67). In addition, it is not clear whether
the transposons hitchhiked on the centromeres for their efficient survival or whether centromeres
formed on the transposons to silence them.

An emerging hypothesis suggests an involvement of the centromeres during karyotype evolu-
tion among closely related fungal species. One of the possibilities for this unusual process is that
the difficult-to-replicate centromeres are hotspots for replication fork stalling (34). The pres-
ence of IRs at the centromeres and the possible secondary structure formation by the AT-rich
centromere DNA may render centromere DNA prone to occasional breakage, as proposed for
the Malassezia species (76). Extensive plasticity of many fungal genomes, especially the predom-
inantly asexual and pathogenic ones, may accommodate such karyotypic changes associated with
speciation.

Finally, one may wonder what the ancestral type of centromere was in the last eukaryotic
common ancestor (LECA). Based on the centromeres identified, we speculate the last common
ancestor of the Ascomycota, Basidiomycota, and Mucoromycota had a regional centromere
with a kinetochore binding region longer than 500 bp surrounded by pericentric heterochro-
matin. Because such an ancestral species harbored the RNAi machinery, retrotransposons at
the centromeres may also have been present. We hypothesize that RNAi and heterochromatic
components were lost either gradually or concomitantly during evolution of some Basidiomycota
and Ascomycota, paving the path of centromere evolution from regional-type transitioning to
point centromeres (Figure 5). Identification of centromeres from other fungal phyla such as the
Zoopagomycota, Chytridiomycota, and Blastocladiomycota will shed light on the centromere
type of the last common ancestor of all fungi.

FUTURE ISSUES

1. How are the neocentromere sites repressed when the native centromere is active?

2. Does phase separation favor the spatial clustering of centromeric chromatin?

3. What could be the structure and nucleotide composition of the centromeres in the last
common ancestor of fungi and the LECA?

4. How is the unconventional pericentric heterochromatin in C. albicans and related species
different from the conventional heterochromatin seen in large regional centromeres?

5. What are the elements restricting the length of centromeric chromatin in fungi?
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